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SNAPS & HUBS
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The theory of spectroscopic networks1 offers a powerful instrument for the in-

telligent design and validation of precision-spectroscopy experiments, as well as the

subsequent derivation of accurate rovibrational energies,2 ,3,4,5 in particular those as-

sociated with hubs (high-degree nodes) of the network. Through a joint experimental

and theoretical approach, absolute energies have been determined for a large num-

ber of hubs in the experimental spectroscopic networks of H 16
2 O and H 18

2 O, with

an accuracy of a few times 10−7 cm−1. The Lamb-dip measurements utilized two

noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-

OHMS) apparata6 ,7 and three probe lasers covering different wavenumber ranges.

The observed lines, whose lower states belong to the vibrational ground state and the

bending fundamental, were selected via the spectroscopic-network-assisted precision

spectroscopy (SNAPS) approach.2 The accurately known energy levels are involved

in thousands of unique transitions already measured, though at much lower accu-

racy, for H 16
2 O and H 18

2 O. From the ultraprecise absolute energies a large number of

benchmark-quality predicted transitions has been deduced, which could be employed

as frequency standards in high-resolution Fourier-transform infrared spectroscopy.
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