THE 2,4-CHALLENGE IN THE MICROWAVE SPECTRA OF 2,4-DIMETHYLTHIAZOLE AND 2,4-DIMETHYLFLUOROBENZENE: STRATEGY TO ASSIGN VERY LOW BARRIER METHYL INTERNAL ROTATION

S. KHEMISSI,¹ M. SCHWELL,¹ I. KLEINER,² H. V. L. NGUYEN^{1,3}, ¹Univ *Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France,* ² Université Paris Cité and Univ Paris Est Creteil, CNRS, LISA, F-75013 Paris, *France,* ³ *Institut Universitaire de France (IUF), F-75231 Paris, France*

The analysis and modeling of internal rotations with extremely low barriers is a challenging task in microwave spectroscopy. An almost free internal rotation hindered by a barrier less than 20 cm−¹ causes large torsional splittings in the spectrum. For molecules with two inequivalent methyl groups, the methyl rotations couple with each other, especially in aromatic molecules through π conjugation, and all rotational lines split into quintets, making spectral assignment and modeling very difficult. The spectral analysis becomes even more complicated if additional effects are present such as the $14N$ nuclear quadrupole coupling, which causes quadrupole hyperfine splittings in addition to the torsional splittings.^{[1](#page-0-0)} Probably for these reasons, a very limited number of studies on aromatic systems undergoing nearly barrier-free inter-nal rotations have been reported.^{[2](#page-0-1)}

We will present here the challenges for two such molecules, 2,4-dimethylthiazole (24DMTA) and 2,4-dimethylfluorobenzene (24DMFB). The microwave spectra were recorded using a pulsed molecular jet Fourier transform microwave spectrometer operating in the frequency range from 2.0 to 26.5 GHz.^{[3](#page-0-2)} The experimental work was supported by quantum chemical calculations. For both molecules, the $XIAM_{mod}$ pro- γ gram^{[4](#page-0-3),[5](#page-0-4)} was used at the beginning to fit the first assigned lines, but it fails to predict new lines at higher *J* and *K* values, as well as to achieve the measurement accuracy of 2 kHz for the final data set.^{[6](#page-0-5)} To assign more lines, fitting each torsional species separately using odd power order parameters to get reliable predictions using the $WSI8 \text{ code}^7$ $WSI8 \text{ code}^7$ and the *SFLAMS* code, $\frac{4}{3}$ as well as checking the assigned frequencies by

¹ [doi.org/10.1515/psr-2020-0037,](http://dx.doi.org/10.1515/psr-2020-0037) H.V.L. Nguyen, I. Kleiner, *Phys*. *Sci*. *Rev*. 7, 679−726 (2020).

² [doi.org/10.3390/molecules27123948,](http://dx.doi.org/10.3390/molecules27123948) H.V.L. Nguyen, W. Caminati, J.-U. Grabow, *Molecules*. 27, 3948 (2022).

³ [doi.org/10.1063/1.1147553,](http://dx.doi.org/10.1063/1.1147553) J.-U. Grabow, W. Stahl, H. Dreizler, *Rev*. *Sci*. *Instrum*. 67, 4072−4084(1996).

⁴ [doi.org/10.1063/1.5142401,](http://dx.doi.org/10.1063/1.5142401) S. Herbers, S.M. Fritz, P. Mishra, H.V.L. Nguyen, T.S. Zwier, *J*. *Chem*. *Phys*. 152, 074301 (2020).

⁵ [doi.org/10.1016/j.jms.2020.111289,](http://dx.doi.org/10.1016/j.jms.2020.111289) S. Herbers, H.V.L. Nguyen, *J*. *Mol*. *Spectrosc*. 370, 111289 (2020).

⁶ [doi.org/10.1515/zna-1990-0817,](http://dx.doi.org/10.1515/zna-1990-0817) J.-U. Grabow, W. Stahl, *Z*. *Naturforsch*. 45a, 1043−1044 (1990). 7 [doi.org/10.1063/5.0049418,](http://dx.doi.org/10.1063/5.0049418) T. Nguyen, W. Stahl, H.V.L. Nguyen, I. Kleiner, *J*. *Chem*. *Phys*. 154, 204304 (2021).

combination difference loops (Ritz cycles)[8](#page-1-0) is the key to success. Finally, the *BELGI-C*s*-2Tops-hyperfine*[9](#page-1-1) and *BELGI-C*s*-2Tops*[10](#page-1-2) programs were used for 24DMTA and 24DMFB, respectively, to decrease the standard deviation to measurement accuracy in a global fit. For 24DMTA, the barriers to internal rotation of the 2- and 4-methyl groups were determined to be 19.070(58) cm^{-1} and 396.707(25) cm^{-1} , respectively. They are 3.23(40) cm⁻¹ and 227.039(51) cm⁻¹ for 24DMFB.

⁸ [doi.org/10.1016/j.jms.2015.10.005,](http://dx.doi.org/10.1016/j.jms.2015.10.005) Y. Zhao, H.V.L. Nguyen, W. Stahl, J.T. Hougen, *J*. *Mol*. *Spectrosc*. 318, 91−100 (2015).

⁹ [doi.org/10.1063/5.0049418,](http://dx.doi.org/10.1063/5.0049418) V. Van, T. Nguyen, W. Stahl, H.V.L. Nguyen, I. Kleiner, *J*. *Mol*. *Struct*. 1207, 127787 (2020).

¹⁰[doi.org/10.1016/j.jms.2011.07.005,](http://dx.doi.org/10.1016/j.jms.2011.07.005) M. Tudorie, I. Kleiner, J.T. Hougen, S. Melandri, L.W. Sutikdja, W. Stahl, *J*. *Mol*. *Spectrosc*. 269, 211−225 (2011).

p-number: p160 Submitted on Wed, 14 Jun 2023 23:17:28 +0200