ISOTOPIC SUBSTITUTION IN POLYATOMIC MOLECULES: COMPARATIVE LINE POSITION AND LINE STRENGTH ANALYSIS OF THE ν_2/ν_4 DYAD OF 12 CD $_4$ AND 13 CD $_4$

O. N. ULENIKOV, O. V. GROMOVA, E. S. BEKHTEREVA, N. I. NIKOLAEVA, National Research Tomsk Polytechnic University, 30, av. Lenina, 634050 Tomsk, Russia; C. SYDOW, C. MAUL and S. BAUERECKER,

Institut für Physikalische und Theoretische Chemie, Technische Universität Braunschweig, D - 38106, Braunschweig, Germany

A highly accurate ro–vibrational analysis of FTIR spectra (line positions of ¹³CD₄ and line strengths of both the ¹²CD₄ and ¹³CD₄ species) is presented. The highresolution infrared spectra of both molecules were measured with a Bruker IFS125 HR Fourier transform infrared spectrometer at an optical resolution of 0.003 cm⁻¹ and analyzed in the regions of 800–1400 cm⁻¹ where the ν_2/ν_4 dyad is located. The number of 901 transitions with $J^{\text{max}}=23$ were assigned to the ν_4 and ν_2 bands of ¹³CD₄. The weighted fit of experimental line positions was made using the Hamiltonian model which takes into account the resonance interactions between the $(0001, F_2)$ and (0100, E) vibrational states. As a result, set of 18 fitted parameters of the $(0001, F_2)/(0100, E)$ vibrational states of ¹³CD₄ was determined which reproduce the initial 901 experimental ro-vibrational line positions with the $d_{\rm rms} = 2.59 \times 10^{-4} \ {\rm cm}^{-1}$, which is close to the experimental uncertainty of the recorded spectra. The analysis of 1557 experimental lines of the dyad of ¹²CD₄ and 131 lines of the dyad of ¹³CD₄ was fulfilled with the Hartmann–Tran profile to simulate the measured line shape and to determine experimental line intensities. Sets of 6/1 varied effective dipole moment parameters of ¹²CD₄/¹³CD₄ are determined which reproduce the initial 1557/131 line strengths with the $d_{\rm rms}=4.80\%$ and 4.21%.

The study was financially supported by Volkswagen Foundation.