C₃: RO-VIBRATIONAL ENERGY LEVELS AND LINE-STRENGTHS FOR THE ELECTRONIC GROUND-STATE

J. TENNYSON, A.E. LYNAS-GRAY, S.N. YURCHENKO and O.L.

POLYANSKY, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT; **N.F. ZOBOV**, Institute of Applied Physics, Russian Academy of Science, Uljanov Street 46, Nizhnii Novgorod, Russia 603950

Although propadienediylidene (tricarbon, C_3) is a major consituent of carbon vapour and therefore a vital molecule for diagnosing the state of astrophysical and terrestial gases containing carbon, available spectroscopic data on hot C₃ are sparse and studies limited as a consequence. As steps towards constructing a full line-list involving states with energies ($\leq 4000 \,\mathrm{cm}^{-1}$) we have undertaken two tasks. First, levels and corresponding line strengths have been calculated for ${
m ^{12}C^{12}C^{12}C}$ and its isotopologues (${}^{12}C{}^{13}C{}^{12}C$ and ${}^{13}C{}^{12}C{}^{12}C$) for $0 \leq J \leq 20$ and $0 \leq K \leq 15$. Partition functions and cross-sections have been deduced for temperatures \leqslant 20K and made available for absorption line studies at interstellar conditions. These results can be compared with the astronomical observations of Giessen *et al.* [1] Second, a MARVEL (measured vibration rotation energy levels) study has been completed: transition data covering both the ground $(X^{1}\Sigma_{g}^{+})$ and first singlet excited $(A^{1}\Pi_{u})$ states were extracted from 13 sources giving a set of 4773 transitions from which 1687 energy levels covering both the X and A state were extracted. The recent work of Martin-Drumel et al. [2] provided a particularly useful starting point for this study. Results of both studies will be reported at the conference.

[1] T.F. Giesen et al., Astron. Astrophys., 633, A120 (2020).

[2] M.-A. Martin-Drumel et al., J. Molec. Spectrosc. 391, 111734 (2023).

p-number: p217

Submitted on Fri, 16 Jun 2023 07:19:51 +0200