NEW SUPERSONIC JET NEAR IR SPECTRA OF AMMONIA AND CHLOROMETHANE

O. VOTAVA, K. BURIAN, and J. RAKOVSKÝ, J. Heyrovský Institute of Physical Chemistry of the CAS, Dolejškova 2155/3, Prague 8, 182 23, Czech Republic

We report new high resolution near IR spectra of chloromethane (CH₃Cl) and ammonia (NH₃): Specifically for chloromethane $2\nu_4^0$ (6007 cm^{-1} - 6033 cm^{-1}) and $2\nu_1$ (5850 cm^{-1} - 5910 cm^{-1}) vibratioal bands have been recorded and two combination bands of ammonia were recorded in ranges 5990 cm^{-1} - 6090 cm^{-1} and 7590 cm^{-1} - 7710 cm^{-1} All data were obtained with tunable diode laser spectrometer coupled to pulsed, slit nozzle (0.1mm x 40mm) supersonic jet. Observed absorption spectra exhibit low rotational and Doppler temperature down to 20 K and as a result are significantly less congested compared to room temperature data. Spectral line positions have been determined with accuracy of $3x10^{-4}cm^{-1}$ by referencing to methane transitions in the same spectral regions.

Ammonia spectra are compared with existing FTIR data for assignment verifications and also with ExoMol CoYuTe linelist ¹. Agreement with the CoYuTe prediction is rather exeptional, with standart devidation between measured and predicted line position 0.056 cm^{-1} in the 7600 cm^{-1} band. The chloromethane spectra are partially assigned using effective Hamiltonnian approach and verified with GSCD. The data are also compared with theoretical Exomol linelists ². The overall agreement between the theory and experiment is lower than in the case of ammonia: The band origin for the CH₃³⁵Cl $\nu_1 + \nu_4$ vibration is about 1.64 cm⁻¹ higher than the experimental value.

p-number: p241

Submitted on Thu, 22 Jun 2023 16:23:17 +0200

¹P.A. Coles *et al.*, *Monthly Notices of the Royal Astronomical Society***490**, 4638 (2019). ²A. Owens *et al.*, *Monthly Notices of the Royal Astronomical Society***479**, 3002 (2018).