ROTATIONAL SPECTROSCOPY OF MOLECULAR IONS USING A NOVEL DOUBLE RESONANCE APPROACH

O. ASVANY, P. C. SCHMID, W. SILVA, D. GUPTA, T. SALOMON, S. THORWIRTH, S. SCHLEMMER, I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany

A novel method of rotational spectroscopy of trapped, cold molecular ions is presented. It is a double resonance scheme combining rotational excitation (in the mmwave region) with rovibrational excitation (in the IR). The rovibrational excitation is detected by the recently developed leak-out spectroscopy (LOS) approach^{1,2}. LOS is based on the vibrational-translational energy transfer process occuring during the collision of the IR excited ion with a noble gas atom, after which the ion may escape the trap ("leak out") so that it can be counted by a detector. LOS and the rotational scheme based on it are very sensitive and generally applicable to any cation or anion. This poster presents rotational spectra for HC_3O^+ , $c-C_3H_2D^+$ and H_2CCCH^+ .

p-number: p001

¹doi:10.1021/acs.jpca.2c05767, P. C. Schmid, O. Asvany, T. Salomon, S. Thorwirth, and S. Schlemmer, *J. Phys. Chem. A*, **126**, 8111-8117, (2022).

²see also talk of P. C. Schmid in Minisymposium "Spectroscopy of ions in traps"

Submitted on Fri, 21 Apr 2023 18:54:20 +0200