MILLIMETER-WAVE SPECTROSCOPY OF AMMONIA-WATER WEAKLY BOUNDED COMPLEX

P. GYAWALI, R. A. MOTIYENKO, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, Univ. Lille, CNRS, F-59000 Lille, France; L. ZOU, Laboratoire de Physico-Chimie de l'Atmosphère, Université du Littoral Côte d'Opale, Dunkerque, France; I. KLEINER, Université Paris Cité and Univ. Paris Est Creteil, CNRS, LISA, 75013, Paris, France

The broadband rotational spectra of ammonia-water (NH₃-H₂O) complex were measured in the frequency range from 50 to 250 GHz using a supersonic-jet emission spectrometer. The NH₃-H₂O complex exhibits two large amplitude motions (LAMs): almost free internal rotation of ammonia owing to very low torsional barrier ($\approx 10 \text{ cm}^{-1}$), and the inversion of water characterized by relatively high barrier ($\approx 700 \text{ cm}^{-1}$). In total, about 150 rotational transitions of NH₃-H₂O were assigned in this study. They were fitted together with the data from previous studies¹ using the "hybrid" Hamiltonian approach². The analysis is in progress as we are currently trying to modify the characteristics of supersonic expansion in order to achieve higher rotational temperatures and consequently to measure higher K_a transitions. We also present recent modification of the spectrometer that allowed us to improve spectral resolution and observe water inversion tunneling splittings in pure rotational transitions of NH₃-H₂O. The latest results will be discussed.

This work has been supported by the French PN LEFE and ANR Labex CaPPA through the PIA under Contract No. ANR-11-LABX-0005-01

¹P. A. Stockman, R. E. Bumgarner, S. Suzuki, & G. A. Blake, J. Chem. Phys. 96, 2496 (1992); G. T. Fraser & R. D. Suenram, J. Chem. Phys. 96, 7287 (1992)

²I. Kleiner & J. T. Hougen, J. Mol. Spectrosc. 368, 111255 (2020)