DUAL-COMB SPECTROSCOPY IN THE TWO-MICRON RANGE USING A NOVEL DESIGN OF DISPERSION-CONTROLLED HIGHLY NONLINEAR FIBRE

A. MALFONDET, M. DEROH, G. MILLOT, ICB, Université de Bourgogne, CNRS UMR 6303, F-21078 Dijon, France,; S.-E. AHMEDOU, R. DAULIAT, P. ROY, R. JAMIER, Université de Limoges, CNRS, XLIM, UMR 7552, F-87000 Limoges, France; A. PARRIAUX, Laboratoire Temps-Fréquence, Institut de Physique, Université de Neuchâtel, Avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland; L. LABONTE, S. TANZILLI, Univ. Côte d'Azur, CNRS, Institut de Physique de Nice, F-06108 Nice Cedex 2, France; J.-C. DELAGNES, CELIA, Centre Laser Intenses et Applications, Université de Bordeaux-CNRS-CEA, UMR 5107, F-33405 Talence Cedex France

Over the past few decades, dual-comb spectroscopy (DCS) has garnered significant interest due to its ability to enable precise and real-time gas detection ¹. This technique finds applications in various fields such as breath analysis, air pollutant detection, agricultural gas flux measurement, or material characterization to cite a few. Moreover, the availability of mature components operating at 1.55 μ m has greatly facilitated the development of spectrometers based on DCS. However, certain molecular species, like CO₂, exhibit a very low absorption in this spectral window, necessitating long absorption lengths to detect them effectively. Hence, there is a need to convert the frequency combs to a more suitable spectral window, preferably around 2 μ m or beyond, to combine the component maturity at 1.55 μ m with efficient absorption in the mid-infrared region.

In this study, we employ the phenomenon of degenerate four-wave mixing ² in a specially designed dispersion-controlled highly nonlinear fiber to convert our frequency combs in the two-micron region ³. This approach enables us to measure the rotational-vibrational absorptions of ¹²C¹⁶O₂ and ¹⁴N₂¹⁶O and extract the self-broadening coefficients associated with these molecules. A study is also performed on a mixture ¹²C¹⁶O₂/¹⁴N₂¹⁶O, in order to measure the broadening of the CO₂ peaks due to the presence of N₂O. Our results are in very good agreement with the HITRAN database, showing the performance of the proposed dual-comb spectrometer.

¹G. Millot *et al.*, "Frequency-agile dual-comb spectroscopy", Nature Photonics, 10, 27 (2016)

²S. Pitois *et al..*, "Experimental observation of a new modulation instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber", Optics Communications, 226,415-422 (2003)

³S.E. Ahmedou *et al.*, "Design and fabrication of dispersion controlled highly nonlinear fibers for far-detuned four-wave mixing frequency conversion", Optics Express, 30, 6 (2023)

Submitted on Sat, 17 Jun 2023 18:36:25 +0200