RECENT PROGRESS IN THE FULL-DIMENSIONAL CALCULATIONS OF INTRA- AND INTERMOLECULAR ROVIBRATIONAL STATES OF H₂O-HF AND H₂O-HCI FROM POTENTIAL ENERGY SURFACES

<u>DOMINIKA VIGLASKA</u>, Groupe de Spectrométrie Moléculaire et Atmosphérique UMR CNRS 7331, UFR Sciences BP 1039, 51687 Reims Cedex 2, France; XIAO-GANG WANG, TUCKER CARRINGTON, Chemistry Department, Queen's University Chemistry Department, Queen's University, Kingston, Ontario K7L 3N6, Canada

Molecular complexes play an important role in the chemistry of planetary atmospheres. H_2O -HF and H_2O -HCl are of considerable interest because of two C_s equivalent minima separated by a very low inversion barrier (≈ 70 and ≈ 50 cm⁻¹, respectively). The recent methodological advances based on the full-dimensional calculations of intra - and intermolecular rovibrational states have significantly improved the understanding of molecular dynamics of Van der Waals complexes ^{1,2}. The rigid-monomer approximation is a good compromise when intramolecular frequencies are much higher than intermolecular frequencies but their application is often not sufficient for the high-resolution molecular spectroscopy. In particular, we show that for H₂O - HF dimer, the coupling between the intra- and intermolecular modes is not negligible (few cm⁻¹ of difference between 5D and 9D calculations) and should be taken into account to predict accurately all the transition frequencies and tunneling splittings. All our calculations are based on a full dimensional ab *initio* potential energy surfaces^{3,4}. The kinetic energy operator discussed initially by Brocks et al.⁵ and written in terms of angular momentum operators defined in monomer- and dimer-fixed frames is used. A G_4 symmetry-adapted Lanczos algorithm and an uncoupled product basis are employed¹. All computed results were confronted with available experimental data. The agreement between theory and experiment is clearly improved when 9D calculations are considered and confirms our suggestion of a possible reassignment for two bands of H₂O-HF. H₂O-HX dimers are excellent candidates for more experimental high-resolution studies.

¹XG. Wang, T. Carrington, J. Chem. Phys., 2023, 158(8), 084107

²P.M. Felker, Z. Bacic, Phys. Chem. Chem. Phys., 2022, 24, 24655

³D. Viglaska, XG. Wang, T. Carrington, D.P. Tew, J.Mol. Spectrosc. 384 (2022), 111587

⁴Y.liu, J. Li, P.M. Felker, Z. Bacic, Phys. Chem. Chem. Phys., 2021, 23,7101

⁵G. Brocks et al., Mol. Phys. 50,1023 (1983)