MARVEL ANALYSIS OF EXPERIMENTAL TRANSITION DATA AND REFINEMENT OF THE ³²S¹⁶O SPECTROSCOPIC MODEL: THE IR/VIS LINE LIST

RYAN P. BRADY, SERGEI N. YURCHENKO, JONATHAN TENNYSON,

Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT London, United Kingdom.

We present a new rovibronic IR/Vis line list for the transient diatomic sulfur monoxide (³²S¹⁶O) computed through our variational code DUO¹ using a semi-empirical spectroscopic model consisting of potential energy curves, spin-orbit curves, electronic angular momentum curves, (transition) dipole moment curves as well as other couplings. The underlying *ab initio* spectroscopic model of SO was taken from Brady et al. $(2022)^2$ which was refined by fitting to a comprehensive experimentally derived set of energies of SO. To this end, an experimental set of 50106 transitions, 49613 of those being non-redundant, have been compiled through the analysis of 29 experimental sources. A self-consistent set of 8850 rovibronic energy levels for the $X^{3}\Sigma^{-}$, $a^{1}\Delta, b^{1}\Sigma^{+}, A^{3}\Pi, B^{3}\Sigma^{-}$, and $C^{3}\Pi$ electronic states has been generated with the MARVEL algorithm³ covering rotational and vibrational quantum numbers J < 69and $\nu \leq 30$, respectively, and energies up to 52350.40 cm⁻¹ (≥ 191 nm). A large gap in our network between 12300-20500 cm⁻¹ exists due to lack of vibrational data for $X^{3}\Sigma^{-}$, $a^{1}\Delta$, $b^{1}\Sigma^{+}$ with no coverage of the $c^{1}\Sigma^{-}$, $A^{3''}\Sigma^{+}$, and $A'^{3}\Delta$ states. Our refined spectroscopic model represents the $X^{3}\Sigma^{-}$, $a^{1}\Delta$, $b^{1}\Sigma^{+}$, and $A^{3}\Pi$ MARVEL energies to a weighted root-mean-square error of 4.0×10^{-5} cm⁻¹, 1.5×10^{-6} cm⁻¹, 2.7×10^{-7} cm⁻¹, and 4.8×10^{-3} cm⁻¹. We do not refine the UV energies here because of the many perturbations in the $B^{3}\Sigma^{-}$ and $C^{3}\Pi$ energies due to their overlapping potentials and large coupling. We do not have data connecting the $B^{3}\Sigma^{-}(\nu = 0)$ state which is required to model the perturbations correctly, and so we leave this to a future project.

¹doi:10.1016/j.cpc.2015.12.021 S.N. Yurchenko, L. Lodi, J. Tennyson, and A.V. Stolyarov, Duo: A general program for calculating spectra of diatomic molecules, *Comput. Phys. Commun.*, **202**, 262 (2016), https://github.com/ExoMol/Duo

²doi:10.1039/D2CP03051A R. P. Brady, S. N. Yurchenko, G.-S. Kim, W. Somogyi and J. Tennyson, An *ab initio* study of the rovibronic spectrum of sulphur monoxide (SO): diabatic vs. adiabatic representation, *Phys. Chem. Chem. Phys.*, **24**, 24076 (2022)

³doi:10.1016/j.jms.2007.07.005 T. Furtenbacher, A. G. Császár and J. Tennyson, MARVEL: measured active rotational-vibrational energy levels, *J.Mol. Spectrosc.*, **245**, 115-125 (2007)

Submitted on Thu, 15 Jun 2023 11:46:48 +0200