COUPLED METHYL INTERNAL ROTATIONS IN HETEROCYLIC MOLECULES: THE MICROWAVE SPECTRA OF 2,4-DIMETHYLPYRROLE AND 2,3-DIMETHYLFURAN

M. G. BARTH¹, M. SCHWELL¹, I. KLEINER², G. BRANNYS³, H. V. L.

NGUYEN^{1,4}, ¹Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France, ²Université Paris Cité and Univ Paris Est Creteil, CNRS, LISA, F-75013 Paris, France, ³ Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52074 Aachen, Germany, ⁴ Institut Universitaire de France (IUF), F-75231 Paris, France

The rotational spectra of the three isomers of methylpyrrole^{1,2,3} and 2,5-dimethylpyrrole⁴ as well as those of the two isomers of methylfuran^{5,6} and 2,5-dimethylfuran⁷ have been investigated. In both series, the effects of methyl internal rotations were observed. The barrier hindering the methyl torsion are mainly impacted by the positions of the methyl groups on the aromatic ring, which do not only reflect the steric but also electronic properties of the molecules.

In the present work, we studied two further cases with two methyl tops, 2,3dimethylfuran and 2,4-dimethylpyrrole. The spectra were measured using a molecular jet Fourier transform microwave spectrometer operating from 2 to 26.5 GHz. The barriers to internal rotation were determined for both molecules. The hyperfine splittings due to the quadrupole coupling of the ¹⁴N nucleus in 2,4-dimethylpyrrole were fully resolved. The quadrupole coupling constants χ_{aa} , χ_{bb} , and χ_{cc} were determined with high accuracy and calculated well using Bailey's method.⁸ The obtained barriers were finally compared to those found for other molecules in the series to observe a trend for methyl internal rotational barriers in pyrrole and furan derivatives.

¹doi:10.1016/S0022-2860(02)00082-0, J. Makarewicz, S. Huber, B. Brupbacher-Gatehouse, A. Bauder, J. Mol. Struct. 612, 117 (2002).

²doi:10.1080/00268976.2019.1668572, T. Nguyen, C. Dindic, W. Stahl, H.V.L. Nguyen, I. Kleiner, Mol. Phys. 118, 1668572 (2020).

³doi:10.1016/j.jms.2020.111351, T. Nguyen, W. Stahl, H.V.L. Nguyen, I. Kleiner, J. Mol. Spectrosc. 372, 111351 (2020).

⁴doi:10.1063/5.0049418, T. Nguyen, W. Stahl, H.V.L. Nguyen, I. Kleiner, J. Chem. Phys. 154, 204304 (2021).

⁵doi:10.1063/1.1671739, W.G. Norris, L.C. Krisher, J. Chem. Phys. 51, 403 (1969).

⁶doi:10.1246/bcsj.44.2344, T. Ogata, K. Kozima, Bull. Chem. Soc. Jpn. 44, 2344-2346 (1971).

⁷doi:10.1016/j.jms.2017.11.007, V. Van, J. Bruckhuisen, W. Stahl, V. Ilyushin, H.V.L. Nguyen, J. Mol. Spectrosc. 343, 121-125 (2018).

⁸doi:10.1016/S0301-0104(99)00342-0, W. C. Bailey, Chem. Phys. 252, 57 (2000).

Submitted on Wed, 14 Jun 2023 20:50:58 +0200