## THE MARVELOUS WORLD OF OH+

## MARCO PEZZELLA, SERGEI N. YURCHENKO, JONATHAN

**TENNYSON**, Department of Physics and Astronomy, University College London, London WC1E 6BT, UK

The OH<sup>+</sup> ion is an interesting molecular species, due to its critical intermediate in interstellar chemistry. OH<sup>+</sup>, together with  $H_2O^+$  and  $H_3O^+$ , is an important probe of the cosmic ray ionization rates in diffuse clouds, on the surfaces of molecular clouds. It is formed by the reaction of oxygen atoms with cosmic ray ionised H or  $H_2$ , and it goes to further reactions with other hydrogen sources to form, *via* multiple steps, OH<sup>1</sup>. It acts as an enabler of more complex reaction networks occurring in the interstellar medium<sup>2</sup>. The molecule is also formed in the ionosphere of Earth and comets<sup>3</sup>.

We started by collecting transition from different experimental work<sup>4</sup> and processing them using MARVEL<sup>5</sup> for generating high level accuracy energy levels, with an uncertainty of  $1 \times 10^{-2}$  cm<sup>-1</sup>. These energies are used in DUO<sup>6</sup> to fit the potential energy curve and couplings of the X<sup>3</sup> $\Sigma$  state, leading to a new linelist with RMSE=5.43×10<sup>-2</sup> cm<sup>-1</sup> with respect to experimental transition energies.



The same procedure is applied to the  $A^{3}\Pi$  state. The coupling between this state and the  $a^{1}\Delta$ ,  $b^{1}\Sigma^{+}$ , and  $c^{1}\Pi$ , leads to a more complex situation to analyse<sup>7</sup>. The

<sup>4</sup>Rehfuss et al 1992 JMS 151 59,C. R. Markus et al 2016 ApJ 817 138,J. N. Hodges et al 2017 ApJ 840 81

p-number: p151

<sup>&</sup>lt;sup>1</sup>D. Hollenbach et al 2012 *ApJ* **754** 105

<sup>&</sup>lt;sup>2</sup>A. J. Porras et al 2014 *ApJL* **781** L8

<sup>&</sup>lt;sup>3</sup>R. Martinez et al 2005 JCP 123 174312, P.V. Stoeva et al 2005 Planetary and Space Science 53 327

<sup>&</sup>lt;sup>5</sup>T. Furtenbacher et al 2007 *JMS* **245** 115

<sup>&</sup>lt;sup>6</sup>Yurchenko et al 2016 *CPC* **202** 262

<sup>&</sup>lt;sup>7</sup>D. Yarkony 1993 *JPC* **97** 111

Submitted on Wed, 14 Jun 2023 19:26:43 +0200

 $X\,{}^{3}\Sigma$  and  $A\,{}^{3}\Pi$  state curves will be used to generate a comprehensive line list for  $OH^{+}.$ 

p-number: p151