A NEW TREATMENT OF THE $2\nu_3$ (A $_1$) INFRARED BAND OF METHYL BROMIDE CH $_3$ Br AROUND 1213 cm $^{-1}$

<u>HAMID NAJIB</u>, Laboratoire des Energies Renouvelables et Environnement, Département de Physique, Faculté des Sciences, Université Ibn Tofaïl, BP: 133, Kénitra, MOROCCO

The high-resolution Fourier transform infrared spectrum of methyl bromide CH_3Br has been reinvestigated in the $v_3 = 2$ vibrational excited state around 1213 cm⁻¹, for both ⁷⁹Br and ⁸¹Br isotopologues.

Thanks to new accurate K-dependent and J-dependent ground state parameters, up to sextic centrifugal distortion constants, 420 new infrared transitions of the $2\nu_3$ band have been assigned for ${\rm CH_3}^{79}{\rm Br}$ and ${\rm CH_3}^{81}{\rm Br}$, extending the rotational quantum number values up to ${\rm K}_{max}=15$ and ${\rm J}_{max}=60$. For each isotopic species, a standard deviation of 2 x 10^{-4} cm⁻¹ has been obtained for about 700 lines of $2\nu_3$. The new parameter values of the ${\rm v}_3=2$ excited state are in good agreement with ones determined previously by infrared spectroscopy, but significantly more accurate.

¹Hamid Najib J. Mol. Spectrosc., **370**, (2020)111297.