ANHARMONIC AND CORIOLIS INTERACTIONS IN THE $v_3 = 2/v_2 = 1/v_5 = 1/v_3 = v_6 = 1$ LEVEL SYSTEM OF CH₃Br

ADINA CEAUSU-VELCESCU, Université de Perpignan, LAMPS, 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France; WILFRIED TCHANA BETNGA, FRIDOLIN KWABIA TCHANA, Université Paris-Cité and Univ. Paris Est Créteil, CNRS, LISA, F-75013 Paris, France; LAURENT MANCERON, Ligne AILES, Synchrotron Soleil, L'Orme des Merisiers, St-Aubin, BP48, 91192 Gif-sur-Yvette, France; Université Paris-Cité and Univ. Paris Est Créteil, CNRS, LISA, F-75013 Paris, France

The ν_2/ν_5 band system of CH₃Br, a methyl halide playing an important role in the catalytic destruction of stratospheric ozone, already constituted the subject of several medium and high-resolution studies.

The novelty of the present study consists in considering, besides the strong Coriolis and α -interactions coupling the $v_2 = 1$ and $v_5 = 1$ levels, a large variety of anharmonic and rovibrational interactions involving also the $v_3 = 2$ and $v_3 = v_6 = 1$ levels. Thousands of new data, belonging either to high J and K values in the ν_2 and ν_5 bands or to the, very weak, $\nu_3 + \nu_6$ combination band, were included in the least-squares calculations.

Thanks to the large set of data, including more than 6300 experimental wavenumbers of the ν_2 , ν_5 , $2\nu_3$ and $\nu_3 + \nu_6$ rovibrational bands, with $J \le 74$ and $K \le 18$, combined to the completeness of the theoretical model, the global standard deviation,

p-number: p062

Submitted on Fri, 09 Jun 2023 17:16:50 +0200

of 2.34×10^{-4} cm⁻¹, represents a great improvement with respect to the previous high-resolution study of the ν_2/ν_5 band system¹. Moreover, the present study explores also the reductions' issue, in the spirit of the work of Střiteská *et al*² and Sarka et al^3 . Two different reductions schemes were thus applied and were proved to be equally successful.

CH3 ⁷⁹ Br:	Parameter	QQ	QC
	$(\eta_J^5 + \eta_K^5) \times 10^5$	-20.9766(47)	-20.9704(47)
	$\alpha_2^A \times 10^3$	-21.8459(36)	-21.8479(36)
	$\alpha_5^A \times 10^3$	46.7461(36)	46.7461(36)
	$(\alpha_2^B + 4q_{22}) \times 10^3$	1.02914(10)	1.02865(11)
	$(\alpha_5^B - 2q_{22}) \times 10^3$	-0.032513(23)	-0.031836(69)
	$(\alpha_2^B + 2\alpha_5^B) \times 10^3$	0.96412(11)	0.964981(95)
CH3 ⁸¹ Br:	Parameter	QQ	QC
	$(\eta_{J}^{5} + \eta_{K}^{5}) \times 10^{5}$	-21.0762(71)	-21.0639(71)
	$\alpha_2^A \times 10^3$	-21.8565(43)	-21.8587(44)
	$\alpha_5^A \times 10^3$	46.7752(43)	46.7840(43)
	$(\alpha_2^B + 4q_{22}) \times 10^3$	1.02346(22)	1.02285(22)
	$(\alpha_5^B - 2q_{22}) \times 10^3$	-0.03028(13)	-0.02952(13)
	$(B, \alpha, B) = 10^3$	0.0(000(0.4)	0.0(202(1.4)

ſ

p-number: p062

Submitted on Fri, 09 Jun 2023 17:16:50 +0200

¹F. Kwabia Tchana, I. Kleiner, J. Orphal, N. Lacome, O. Bouba, J. Mol. Spectrosc. 228 (2004) 441-452.

²L. Nová Střiteská, K. Sarka, Š Urban, J. Mol. Spectrosc. 256 (2009) 135-140.

³K. Sarka, L. Nová Střiteská, A. Ceausu-Velcescu, J. Mol. Spectrosc. 311 (2015) 84-99.