ACCESSING HIGHER VIBRATIONAL STATES OF He⁺₂ THROUGH MULTI-STEP EXCITATION

M. HOLDENER, F. MERKT, Department of Chemistry and Applied Biosciences, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland

The precise measurement of highly excited vibrational states of small molecular systems such as H_2^+ , H_2 and He_2^+ is of significant interest as benchmark to *ab-initio* quantum-chemical calculations 1 . In the case of He_2^+ , only the first few vibrational levels of the electronic ground state X^+ $^2\Sigma_u^+$ were precisely measured 2,3 . In this poster presentation, we propose a method to access the higher vibrational states of He_2^+ X^+ $^2\Sigma_u^+$ using a multi-step excitation scheme. Our approach involves the production of a molecular beam of He_2 in the long-lived metastable a $^3\Sigma_u^+$ state 4 through an electric discharge. We then utilize a high-intensity laser to promote the system to the electronic state c $^3\Sigma_g^+$ in an excited vibrational level with v in the range 3-5. This state predominantly decays radiatively to the a $^3\Sigma_u^+$ state with v'=v because of favorable Frank Condon factors. A second laser is then employed to induce a transition from the vibrationally excited metastable state a $^3\Sigma_u^+(v')$ to the ion state X^+ $^2\Sigma_u^+(v^+=v')$. This method offers the prospect of studying the structure and dynamics of highly excited vibrational levels of He_2^+ that are typically challenging to access.

¹doi:10.1103/PhysRevLett.125.213001, Dávid Ferenc et al., Phys. Rev. Lett., 125, 213001 (2020)

²doi:10.1103/PhysRevLett.124.213001, Luca Semeria et al., Phys. Rev. Lett., **124**, 213001 (2020)

³doi:10.1063/1.5051089, Paul Jansen et al., J. Chem. Phys., **149**, 154302 (2018)

⁴doi:10.1063/1.455993, Cary F. Chabalowski et al., J. Chem. Phys., **90**, 2504-2512 (1989)